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Troublesome Threes

A 3 Ingredients

I Data; Models; Expertise

A 3 Myths

I Big data warehouses are the solution
I Science provides the models to utilise the data
I Clinicians will continue to be the main source of data

A 3 Pipelines
I R&D; Quality Improvement; Payor & Public Health



Dormant Data

Body Mass Index (BMI) trend in Wirral 3y-olds from 1988 to 2003
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SDS = standard deviation score from 1990 British Growth Reference charts i adjusts for age and sex of the child



Density
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Easily Disregarded Data

ALT Test Times for Type 2 Diabetics
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Trends in liver function sought in
patients with longterm conditions.

Most did not have regular repeat tests.
Complex time structure to model.
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log ALT Result

Improved Liver Function on Starting Glitazone

FirstglitazoneRx

Mean log(ALT) before
Mean log(ALT) after

o Fitted trendsdo not joinA evidence of change @fiitazoneeffect on ALT
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Decrease (pooled) 8.15 (se=0.009p<1x10°
Similar irrespective of eprescriptions {G = 0.12; GM =0.16; GS = 0.16; GSM =0.15
G =glitazone M = metformin, S sulponylured



Rosiglitazone to Pioglitazone: No Liver Signal
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Trapped Data

A Narrative

I Vioxxrisk of M| detectable pr&004

A By text mining 154k RA patient notes
A Not by ICED codes from same notes

A Repeated for 2 other risks
LePendwet al. 2012, BioMedSem3(1):S5

A Rubrics
i/ 2RS FT2NJ GeéL)S H RAIFI0SGSaA
I Access blocked by some ethics committees



Miscoded Data

UK Diabetes Prevalence from Different Databases

5%
%)
L 4%
5]
o
o
) /
©
8 3% . .
ac) «=4=GPRD - diagnostic code:
c_g =@=GPRD - all codes
)
a e THIN
% 2% == (Q-research
3 = QOF
IS
£
17
W 19
O% T T T T T T 1

1999 2000 2001 2002 2003 2004 2005
Year

Data from Tim Doran, University of Manchester



Haemoglobin (g/L)
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Clinical (audit) question leading to scientific finding:
required local metadata (assay change) not in national datasets

Anaemia at lower levels ¢f
kidney impairment than
commonly thought
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Data Warehouses are not the Solutior

A Need contextuaietadata P g X
continuously adding value

to big data

A Needengaged communities
adding the metadata

A OMOP lessons

I Current big data only for crude effects
I Different answers from different datasets & methods



Big Data in Context

Datasets _
(+ models) DataC ModelsC Expertise

(searched by experts) GasYabAyd ysi



Fragmented Evidence & Workflows

Patient is theunion, not the sum of pathways
Needusefully complexnodels of health & care
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Health Recorc!s Health Avatars
& Knowledge Silos & Dynamic Models

Open Unifying Modelling:
Across mechanisms and contexts

e.g. Coronary heart disease

e.g. Chronic obstructive ne . e.g. Lung cancer _
pulmonary disease Multi-scale &
(

N Multi-system
Unified Graphical Model Health:
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Not About Mining Big Data

Problem Space Observation Space Data Space

0

y = blx1l + b2x2 + b3x3 + C

...llke squinting at an image through a doyley and prism

Need to harness networks of reasoning about models
Not just structure in big data



Model-based Machine Learning

A Suspected myth: false division of children into
allergic tendency (atopy) or not

A Life-course data: birth cohort of 1,000 children
from Manchester with careful measurements

A Approach: unsupervised search for
patterns of sensitisatiody, shape hypotheses

infer.ne t



Unsupervised Clustering of

Allergic Sensitisation Development
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